Photoreversibility of the Effect of Red and Green Light Pulses on the Accumulation in Darkness of mRNAs Coding for Phycocyanin and Phycoerythrin in Fremyella diplosiphon.

نویسندگان

  • R Oelmüller
  • A R Grossman
  • W R Briggs
چکیده

DNA fragments encoding a red light-inducible phycocyanin gene and a green light-inducible phycoerythrin gene have been used to investigate the effect of red and green pulses on the accumulation of phycocyanin and phycoerythrin mRNA in subsequent darkness. A red pulse promotes phycocyanin and suppresses phycoerythrin mRNA accumulation while a green pulse has an opposite effect on both transcript levels. The effect of a saturating light pulse is canceled by a subsequently given pulse of the other light quality. For a given mRNA, the positive and negative effects require the same fluence for saturation, whereas to saturate the phycoerythrin mRNA response requires at least twice as much light as to saturate the phycocyanin mRNA response. Calculations of the apparent extinction coefficients for the pigments mediating the light-regulated mRNA increase and decrease are of the order of 2 x 10(4) for phycocyanin mRNA and less than 10(4) for phycoerythrin mRNA. The data are consistent with the hypothesis that the light-induced increase and decrease of a particular phycobiliprotein mRNA is controlled by a single red/green photoreversible photosystem, but that phycoerythrin and phycocyanin mRNA levels are either controlled by two distinct photoreversible systems or that marked differences occur in the chain of events leading from photoperception to gene activation. These system(s) differ from most phytochrome systems in several ways: First, they remain fully on or off depending upon the light quality of the terminal irradiation. Second, they can be completely reversed by light of the appropriate wavelength after several hours of darkness without diminution of the effectiveness of the reversing light pulse. These two features argue against the existence of dark reversion or dark destruction of the biologically active moiety. Third, signal transduction is rapid-measurable mRNA changes occur even during a 10 minute irradiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in Accumulation and Synthesis of Transcripts Encoding Phycobilisome Components during Acclimation of Fremyella diplosiphon to Different Light Qualities.

We have used gene-specific DNA fragments as hybridization probes to quantitate the levels of transcripts encoding several phycobilisome polypeptides in the cyanobacterium Fremyella diplosiphon in response to changes in the light environment. While the levels of transcripts encoding allophycocyanin, the core linker polypeptide, and the constitutive phycocyanin subunits are similar in F. diplosip...

متن کامل

Light Quantity Affects the Regulation of Cell Shape in Fremyella diplosiphon

In some cyanobacteria, the color or prevalent wavelengths of ambient light can impact the protein or pigment composition of the light-harvesting complexes. In some cases, light color or quality impacts cellular morphology. The significance of changes in pigmentation is associated strongly with optimizing light absorption for photosynthesis, whereas the significance of changes in light quality-d...

متن کامل

Light-dependent attenuation of phycoerythrin gene expression reveals convergent evolution of green light sensing in cyanobacteria.

The colorful process of chromatic acclimation allows many cyanobacteria to change their pigmentation in response to ambient light color changes. In red light, cells produce red-absorbing phycocyanin (PC), whereas in green light, green-absorbing phycoerythrin (PE) is made. Controlling these pigment levels increases fitness by optimizing photosynthetic activity in different light color environmen...

متن کامل

Light-induced Changes in Allophycocyanin.

Several lines of evidence indicate that allophycocyanin is the previously unidentified "phycochrome" observed in extracts of blue-green algae.Fractions containing phycoerythrin, phycocyanin, and allophycocyanin and exhibiting light-induced absorbance changes were prepared from extracts of Nostoc muscorum and Fremyella diplosiphon by isoelectric focusing. Illumination of such fractions with red ...

متن کامل

Genes encoding major light - harvesting polypeptides are clustered on the genome of the cyanobacterium Fremyella diplosiphon ( phycobilisome / allophycocyanin / phycocyanin / chromatic adaptation / light - regulated RNA )

The polypeptide composition of the phycobilisome, the major light-harvesting complex of prokaryotic cyanobacteria and certain eukaryotic algae, can be modulated by different light qualities in cyanobacteria exhibiting chromatic adaptation. We have identified genomic fragments encoding a cluster of phycobilisome polypeptides (phycobiliproteins) from the chromatically adapting cyanobacterium Frem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 1988